maintenance

Your Roof: 8 Things to Consider!

Your Roof: 8 Things to Consider!

Image result for roof picture
If your house, condominium or commercial office building is like most built in the last 50 years, it probably has a sloped roof with one of the following roofing materials:
  • composition shingles
  • composite tile
  • cement or clay tile
  • wood shingles
  • metal roofing

Each type of roofing has its unique characteristics. However, there are also some common considerations to keep in mind:

  1. Life – The actual service life of a roof varies according to the location and exposure to sun and weather. You should not assume that the age determines its condition.
  2. Leaks – These are not usually the result of the roofing itself failing. Leaks usually occur due to the failure or improper installation of some related component such as flashing or underlayment.
  3. Resurfacing – When resurfacing a roof, you should strip the existing material to the sheathing to allow for a visual inspection of the sheathing, and replacement of all of the related components.
  4. Stains – If you have dark stains on a composition roof, it is probably mold. Diluted chlorine cleaners and products such as Shingle Shield are effective at removing the growth. New shingles are more fungus-resistant than some of those manufactured in the 1980s and ‘90s.
  5. Trees – Cut back overhanging tree limbs. They can wear a hole in your roof from the wind blowing through the trees.
  6. Gutters – If you have gutters, keep them clean. Gutters full of debris are far worse than no gutters. Debris encourages fungus, which can infect the roof sheathing. Rot and mold are the result.
  7. Wood – If you have wood shingles, make sure that they are treated for fire resistance and that the treatment is kept current.
  8. Clean – Keep your it clean, especially the details around skylights, dormers and valleys, and take note of any change in shape – this is where leaks start.

Your roof has an important job to do—to keep you dry in all kinds of weather. If you take care of it, you will get the most reliable protection and longest life.

Read more

Foundation Forensics

Crack in a foundationCracks in foundations are by far the most common structural complaint raised in either reserve fund studies or transition studies.   They can occur in the youngest or newest condo building. As condo documents usually assign the maintenance responsibility of their repair to the association, board members and property managers take them very seriously.  Missouri condo buildings have many types of foundations including concrete block; brick; and mortared stone with the most common being poured concrete.

Most basements and garages have 4 to 6 inch concrete slabs and unless this is a slab-on-grade foundation, the slabs were poured independently of the foundation walls.  They are said to be ‘floating’.  Often the construction joint between the slab and wall can easily be seen.  The common slab crack complaint is hairline cracks appearing in spider web-like patterns.  These cracks can show up shortly after construction and are normally caused by shrinkage during the curing process.  The key point here is this type of slab cracking is rarely a structural problem, for after all, the slab could be completely removed leaving a dirt floor while the foundation walls and columns with footings will easily maintain a stable building.

Therefore, slab cracking is often more of a cosmetic problem.  Cracks are often repaired with a variety of grout, caulk, or epoxy products primarily to prevent groundwater penetration, insect entry, or radon gas infiltration.  Cracks showing differential movement on opposing surfaces can be a tripping hazard but more importantly an indication of serious sub-surface conditions needing further investigation.

Regarding foundation walls, the most typical problem with concrete walls are vertical hairline cracks, often starting at the top of the wall and traveling down to the floor slab.  A sub-set of these types of cracks are those that propagate often in a diagonal direction from stress concentration points such as the bottom corners of basement window openings.  The key point to remember is these types of cracks, even when they penetrate the entire thickness of the wall, normally do not constitute a structural problem as the loads from above pass unobstructed on both sides of the crack to the footings below.

However, when the wall surfaces on both sides of the crack are moving out of plane or the structure above shows stress in the form of movement or cracking sheetrock walls and ceilings above, further structural evaluation is warranted.  Foundation cracks should be sealed if periodic water infiltration occurs.  Repairing cracks from the outside if often the best method, but due to the excavation costs involved, repairing the crack from the interior by injecting a crack filling material has become a routine solution.

When horizontal wall cracks; multiple closely spaced vertical cracks; or large diagonal cracks in basement corners are observed, these conditions may indicate more serious problems related to settlement or other structural problems.  Similarly, a single vertical crack that is much wider at the top of the wall may indicated foundation settlement problems stemming from poor soil conditions; hydrostatic groundwater pressures; or frost heaving.  These problems should be directed to a knowledgeable consultant.

Regarding concrete block foundation walls, most of the guidance above can be used with some exceptions.  By their nature concrete block walls are often not well reinforced and are subject to inward movement from various soil pressures causing these types of walls can bulge inward.  Ice lens forming about 3 feet below the ground surface can expand and push concrete block walls inward.  This can even occur from a vehicle’s weight being too close to the foundation, such as oil delivery truck.  When horizontal cracking is observed in block walls, steps should be taken quickly to prevent further movement.  These types of walls are also very susceptible to water penetration even when foundation drains are present often requiring serious water proofing repairs.

The key to maintaining a sound brick or concrete block foundation is periodic vigilance to ensure loose or dislocated masonry elements are not ignored.  If you observe a ‘stair step’ patten crack in the mortar joints of a masonry foundation wall, it typically means settlement has occurred under the ‘step’ section of the wall. .  Any observed bulges or horizontal movement, as well as new cracks, should be quickly addressed.

Many Missouri condominiums have been converted from old multi-family apartment buildings with mortared or un-mortared stone foundations, some with brick foundation walls above the ground surface.  These foundations have stood the test of time and are more than 100 years old and if well maintained can last another 100 years.  They are more likely to allow the entrance of ground water due to their porous nature and the necessary steps should be taken to protect the structural elements and indoor air quality of the building if high moisture is a problem.  Old foundations are like people.  As they age, they need some extra care but they have already met the test of time.

Read more

Paving Maintenance Guidelines

Proper paving maintenance will save you time and money!

PAVING ISN’T SEXY: BUT PROPER PAVING MAINTENANCE IS ESSENTIAL

When was the last time you thought about your parking lot? The honest answer, probably, is not in recent memory.  It’s not a question of ‘out of sight –out of mind.’ Parking lots and other paved areas are highly visible, but they aren’t all that interesting.  There is nothing sexy about asphalt but paving maintenance is very important.

A well-designed, nicely manicured landscape will get your attention; a nicely-paved parking lot – not so much.  As a result, paved areas don’t always get the maintenance attention they need, and that is a potentially serious problem for both the owners of commercial properties (shopping malls, for example) and the homeowner associations that manage residential condominium communities.  A poorly maintained parking lot is not only an eyesore, detracting from a property’s curb appeal; it is also a liability risk:  Customers or residents who trip over cracks or whose cars are damaged by potholes are going to sue the property owner.

Paved areas, if well-constructed and well-maintained, can last between 25 and 30 years or more, depending on where they are located and how they are used.  Unfortunately, parking lots, sidewalks and driveways are often afterthoughts — the final items on a construction checklist, undertaken near the end of the project when funds are low and the developer’s attention is waning.

Doing Paving Maintenance Right

Pavement isn’t complicated.  It begins with good soil compacted properly to create a stable base that should be covered by two layers of asphalt ― a base course on bottom and a wearing course on top. There is some disagreement about the desired thickness, but no question that the thicker the asphalt layers, the longer their life.  The industry standard calls for a combined thickness of between 2.5 and 5 inches, with the top layer thicker than the bottom.

Only about half of the parking lots we inspect meet that standard.  Most fall short and many fall well short, with both layers sometimes totaling less than 2 inches.  If the asphalt layers are too thin, if the underlying soil is poor, or if the area isn’t paved uniformly the surface will form holes, crack and split, requiring constant repairs and premature repaving.

Harsh winters and the damage inflicted by the steel blades of snow plows take a toll in New England and other cold climates; extreme heat and exposure to the blazing sun do the damage in the south and southwest.  Pavement in hotter areas may require the application of a sealant (to smooth over holes and cracks) in less than a year after being laid; pavement in colder climates may not need sealant for five years, and possibly not all, but it will benefit from efforts to mitigate the damage inflicted by snow and ice.

You can’t skip the snow plowing or the application of de-icing materials, but some of those materials are harder on asphalt than others. It’s worth asking your snow removal contractor for recommendations.  Proper application of the material is also essential; adding more salt won’t necessarily improve its effectiveness, experts say, but it will increase the cumulative damage to paved areas and reduce their useful life.

Poor drainage can also accelerate deterioration. Even the best-laid surface will be compromised over time if water “ponds” on it instead of draining properly. You can spot evidence of ponding even if it isn’t raining. Areas of discoloration (shadows) and collections of dirt, twigs and other debris are red flags indicating a drainage problem.  A decent slope and catch basins, on the other hand, suggest that the contractor was thinking about proper drainage

Paving Maintenance Guidelines

All pavement, however well or poorly-constructed, requires proper care. Paving maintenance schedules will vary ─ some paved areas will require attention sooner or later than others — but the protocols will be essentially the same.

A few small cracks here and there will be the first sign of wear. They will usually appear between the three- and five-year marks, and filling them will be the first line of defense. The important thing about cracks is, small ones will quickly become larger, so you don’t want to ignore them. They represent both a safety hazard (people can twist their ankles or trip over them) and a structural concern. Water can seep through the cracks causing damage below the surface of the asphalt. In warm climates, the water will unsettle the soil, pushing the clay up against the asphalt and accelerating the deterioration process. In New England, water will trigger a destructive freeze-thaw-freeze process in the winter, which will also shorten the asphalt’s useful life.

You can deal with small cracks by filling them in. Contractors typically use a melt-in substance that won’t shrink after application. This is the product highway crews use because of its durability and ease of application. It is sold under several retail brand names, all variants of “hot-applied crack sealant.” Experts suggest that you fill cracks every two or three years, as part of a regular maintenance plan. If cracking becomes more widespread, you can take the next step, which is to apply a sealant to the entire paved area.

Resurfacing and Replacing

As asphalt ages, one or more sections may begin to break up or flake, indicating that the surface is beginning to deteriorate. Patching will probably take care of the problem, at least for a while. But you don’t want to just pave over the failed area ― a shortcut some contractors might suggest; you want the contractor to cut out the area, fill in the subsurface and then pave over that. This will give you a sturdier, longer-lasting repair, but it is still a temporary fix ─ a band aid, not a cure.

At some point — and the hope is it will be later rather than sooner in your pavement’s life ― deterioration will accelerate, repairs will become more frequent requiring more aggressive and more expensive responses.

One option is to resurface the area ─ either lay a new surface over the existing one, or remove the old asphalt and pave the area anew. These options make sense if the underlying soil base is stable. But remember Einstein’s definition of insanity (doing the same thing repeatedly and expecting a different result). If the old surface failed prematurely because the underlying soil wasn’t’ stable, a new surface laid over that unstable soil won’t wear or fare any better.

It’s time to start over. The contractor should remove the old asphalt, scoop out the bad soil, replace it with gravel and stone to create a solid base, and then lay the new pavement over it. That’s the traditional approach. A newer technique calls for pulverizing the old asphalt and using it as a base for the new pavement. In addition to creating what contractors say is a “super-solid” base, pulverizing the old asphalt eliminates the cost of trucking it away and disposing of it at a hazardous waste site. Either technique will give you nice, new pavement that will last another 25 or 30 years or more.


The Engineering Advisor is intended to enhance your knowledge of technical issues relating to buildings.  For additional information on any subject, please feel free to call us.  Our commitment is to provide you with timely, accurate information.

Read more